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In the case of liquid-vapor phase coexistence, a dilute
nearly ideal vapor phase is in equilibrium with a dense liquid-
like phase. The interesting case of finiteness is realized when
the liquid phase is a finite drop. We introduce the concept of
the complement (the residual drop which remains after a clus-
ter has been emitted) in order to quantify finite size effects
and to generalize the theory for cluster yields from extremely
small systems. The complement approach consists of evalu-
ating the change in free energy occuring when a particle or
cluster is moved from one (finite) phase to another.

In order to demonstrate the power of this method, we ap-
ply it to the canonical lattice gas representation of the Ising
model [1]. We fix the mean density of occupied sites so that
below the coexistence temperature there is a large cluster in
equilibrium with its vapor.

Fisher’s theory of clusterization assumes that the monomer-
monomer interaction exhausts itself in the formation of physi-
cal clusters in equilibrium with the liquid and themselves. The
cluster concentration is given as
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where c0Aσ is the surface energy and g(A) is the cluster degen-
eracy and is approximately A−τ exp(c0Aσ/Tc). The resulting
surface entropy S(A) is given by

S(A) ≈ lng(A) ≈−τ lnA+
c0Aσ

Tc
. (2)

Eq. (2) is a remarkably felicitous asymptotic expansion.
The presence of a leading term in S proportional to A σ per-
mits the vanishing of the cluster free energy at a T = Tc in-
dependent of cluster size. This expression, valid for a vapor
in equilibrium with the infinite liquid, must be generalized for
equilibrium with a finite liquid.

For each cluster of the vapor we can make the mental exer-
cise of extracting it from the liquid, determining the change in
entropy and energy of the drop and cluster system, and then
putting it back in the liquid (the equilibrium condition), as if
all other clusters of the vapor did not exist. Fisher’s expres-
sion can be written for a drop of size A0 in equilibrium with
its vapor as follows
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FIG. 1: The scaled cluster yields as a function of the surface energy
with the complement for different combinations of lattice size L and
mean density ρ.
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We treat the “complement” (A0 −A) in the same fashion as
a cluster. The resulting expression reduces to Eq. (1) when
A0 → ∞. While different than the standard Fisher expression,
Eq. (4) admits the same Tc as that of the infinite system. This
is because the A0, A dependence of the surface energy finds its
exact counterpart in that of the surface entropy.

Our generalized form of the Fisher expression (Eq. (4)) can
be used to fit vapor concentrations in equilibrium with a fi-
nite droplet. We can then examine a Fisher-like scaling plot
of all the nA(T ). Given Eq. (4) we can use any drop size

and automatically correct for it by plotting nA(T)(
A[A0−A]

A0

)−τ ver-

sus c0(Aσ + [A0 −A]σ−Aσ
0 )(1/Tc − 1/T). This is shown in

Fig. 1 for a variety of vapors in equilibria with drops of dif-
ferent sizes. The accurate scaling that is observed vouches for
the generality of Eq. (4). The value of the critical temperature
extracted is Tc = 2.28±0.02. This is to be compared with the
theoretical value of 2/ ln(1 +

√
2) = 2.26919 . . . for the Ising

model in two dimensions. One can now sum the Fisher con-
centrations of Eq. (4) to calculate the pressure and density of
the vapor in coexistence with a given ground state droplet.
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